Vol: 55(69) No: 4 / December 2010 

GPGPU Based Acceleration of the Single Scatter Simulation Algorithm for Positron Emission Tomography
Ákos Szlávecz
Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, H-1117 Budapest, Magyar tudósok körútja 2, e-mail: szlavecz@iit.bme.hu, web: http://www.iit.bme.hu
Zoltán Puskás
Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, H-1117 Budapest, Magyar tudósok körútja 2, e-mail: zpuskas@iit.bme.hu
Balázs Benyó
Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, H-1117 Budapest, Magyar tudósok körútja 2, e-mail: bbenyo@iit.bme.hu


Keywords: Positron Emission Tomography, Single Scatter Simulation, GpGPU, CUDA, Compton scattering, High performance computing

Abstract
Positron Emission Tomography (PET) is a widely used and powerful metabolic imaging technique for functional diagnosis of organs. Compton scattering is a physical effect that results in distortions in the reconstructed image. The model based, so-called, Single Scatter Simulation (SSS) algorithm is an appropriate solution for scatter correction. However, the SSS algorithm is extremely computation intensive. The application of the SSS algorithm in clinical environment requires the application of high performance computing (HPC) techniques. In this work we give a survey about different high performance computing techniques and introduce the selection process of optimal HPC platform for the implementation of the Single Scatter Simulation algorithm. As a conclusion the selected platform is the GPU. The SSS algorithm has been implemented and verified for the selected HPC platform. Using the GPU the required execution time became 160 times less compared to the CPU based version but further capabilities for acceleration still remained in the implementation.

References
[1] D. Baley, D. Townsend, P. Valk, and M. Maisey, Positron Emission Tomography Basic Sciences. Springer-Verlag London, 2005.
[2] V. Grégoire, K. Haustermans, X. Geets, S. Roels, and M. Lonneux, “Pet-based treatment planning in radiotherapy: A new standard?” Journal of Nuclear Medicine, vol. 48, no. No. 1 (Suppl), pp. 68S–77S, 2007.
[3] D. L. Chen and F. Dehdashti, “Advances in positron emission tomographic imaging of lung cancer,” The Proceedings of the American Thoracic Society, vol. 2, no. 6, pp. 541–544, 2005.
[4] D. Papathanassiou, C. Bruna-Muraille, J.-C. Liehn, T. D. Nguyen, and H. Curé , “Positron emission tomography in oncology: Present and future of pet and pet/ct,” Critical Reviews in Oncology/Hematology, vol. 72,no. 3, pp. 239 – 254, 2009.
[5] H. Zaidi, H. Vees, and M. Wissmeyer, “Molecular pet/ct imaging-guided radiation therapy treatment planning,” Academic Radiology, vol. 16, no. 9, pp. 1108 – 1133, 2009.
[6] O. E. Rimoldi and P. G. Camici, “Positron emission tomography for quantitation of myocardial perfusion,” Journal of Nuclear Cardiology, vol. 11, no. 4, pp. 482 – 490, 2004.
[7] D. S. Lee, S. K. Lee, and M.-C. Lee, “Emerging role of pet in epilepsy,” International Congress Series, vol. 1264, pp. 10 – 25, 2004.
[8] S. Grootoonk, T. J. Spinks, D. Sashin, N. M. Spyrou, and T. Jones, “Correction for scatter in 3d brain pet using a dual energy window method,” Physics in Medicine and Biology, vol. 41, no. 12, p. 2757, 1996.
[9] L. Shao, R. Freifelder, and J. Karp, “Triple energy window scatter correction technique in pet,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 641 –648, dec 1994.
[10] M. King, G. Hademenos, and S. Glick, “A Dual-Photopeak Window Method for Scatter Correction,” The Journal of Nuclear Medicine, vol. 33, no. 4, pp. 605–612, 1992.
[11] D. L. Bailey and S. R. Meikle, “A convolution-subtraction scatter correction method for 3d pet,” Physics in Medicine and Biology, vol. 39, no. 3, p. 411, 1994.
[12] M. Bentourkia, P. Msaki, J. Cadorette, and R. Lecomte, “Assessment of Scatter Components in High-Resolution PET: Correction by Nonstationary Convolution Subtraction,” The Journal of Nuclear Medicine, vol. 36, no. 1, pp. 121–130, 1995.
[13] M. Daube-Witherspoon, R. Carson, Y. Yan, and T. Yap, “Scatter correction in maximum-likelihood reconstruction of pet data,” Proceedings of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference, 1992, vol. 2, pp. 945–947, 1992.
[14] C. C. Watson, D. Newport, and M. E. Casey, “A single scatter simulation technique for scatter correction in 3d pet.” Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 255–268, 1996.
[15] G. Bányász and T. Levendovszky, Linux Programozás. Szak Kiadó, 2003.
[16] OpenMP, “Openmp specifications,” http://openmp.org/wp/openmp-specifications/.
[17] M. forum, “Mpi specifications,” http://www.mpi-forum.org/docs/docs.html.
[18] V. S. Sunderam, “Pvm: A framework for parallel distributed computing,” Concurrency - Practice and Experience, vol. 2, no. 4, pp. 315–339, 1990.
[19] P. community, “Parallel virtual machine home and resources,” http://www.csm.ornl.gov/pvm/.
[20] I. Grout, Digital Systems Design with FPGAs and CPLDs. Newnes, 2008.
[21] IBM, “Cell broadband engine architecture,” http://www.ibm.com/developerworks/power/cell.
[22] M. C. Systems, “Cell accelerator board 2,” http://www.mc.com/products/boards/accelerator board2.aspx?terms=CBE.
[23] nVidia, “Cuda programming guide,” http://developer.nvidia.com/.
[24] S. Jan, G. Santin, D. Strul, S. Staelens, K. Assi, D. Autret, S. Avner, R. Barbier, M. Bardis, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. rieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J.-M. Vieira, D. Visvikis, R. V. de Walle, E. Wiers, and C. Morel, “Gate: a simulation toolkit for pet and spect,” Physics in Medicine and Biology, vol. 49, no. 19, p. 4543, 2004. [Online]. Available: http://stacks.iop.org/0031-9155/49/i=19/a=007.
[25] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113 –122, oct. 1982.
[26] M. E. Daube-Witherspoon and G. Muehllehner, “Treatment of Axial Data in Three-Dimensional PET,” The Journal of Nuclear Medicine, vol. 28, no. 11, pp. 1717–1724, 1987. [Online].

  


   Designed and maintained by Dan Pescaru, "Politehnica" University of Timisoara,
©'2007 Faculty of Automation and Computers